Hall sensors setup
Step 1. Instantiate HallSensor
class
To initialize the hall sensors you need to provide the pin numbers for A
, B
and C
(sometimes called U
,V
andW
) channel and the number of pole pairs pp
of the motor.
// Hall sensor instance
// HallSensor(int hallA, int hallB , int cpr, int index)
// - hallA, hallB, hallC - HallSensor A, B and C pins
// - pp - pole pairs
HallSensor sensor = HallSensor(2, 3, 4, 11);
Step 2. Configuration
Additionally the hall senso has one more optional parameter you may set, the pullup location. Hall sensors usually require pullups and in cases when your sensor needs one and you don’t have one on your hands you can use Arduino pullups. That is set by changing the value of the sensor.pullup
variable. The default value is set to Pullup::EXTERN
but if you would like to change it to use the MCU ones do:
// use internal pullups
sensor.pullup = Pullup::INTERN;
Arduino Pullup 20kΩ
Be careful when using internal pullups, Arduino has relatively high valued pullups around 20kΩ, which means that you might have some problems for higher velocities (for shorted impulse durations). Recommended pull-up values are in between 1kΩ and 5kΩ.
Step 3. Interrupt setup
There are two ways you can run hall sensors with Simple FOC library.
- Using hardware external interrupt
- Arduino UNO(Atmega328) pins
2
and3
- STM32 boards any pin
- ESP32 any pin
- Arduino UNO(Atmega328) pins
- Using software pin change interrupt by using a library such as PciManager library
- Only for Arduino devices (Atmga328 and Atmage2560)
Software interrupts
Using the hardware external interrupts usually results in better and more reliable performance but software interrupts will work very well for lower velocities. Especially on boards that just don't have enough hardware interrupt pins, having this functionality basically enables FOC on these boards.
Hardware external interrupt
Arduino UNO has two hardware external interrupt pins, pin 2
and 3
, Arduino Mega has 6 interrupt pins, pins 2
, 3
, 18
, 19
, 20
and 2
whereas ESP32 and STM32 boards can use all their digital pins as interrupt pins, which makes implementation much easier.
Simple FOC HallSensor
class already has implemented initialization and sensor A
, B
and C
channel callbacks. All you need to do is define two functions doA()
, doB()
and doC()
, the buffering functions of sensor callback functions sensor.handleA()
, sensor.handleB()
and sensor.handleC()
.
// interrupt routine initialization
void doA(){sensor.handleA();}
void doB(){sensor.handleB();}
void doC(){sensor.handleC();}
And provide those functions to the hall sensor interrupt init function sensor.enableInterrupts()
// enable hall sensor hardware interrupts
sensor.enableInterrupts(doA, doB, doC)
You can name the buffering functions as you wish. It is just important to provide them to the sensor.enableInterrupts()
function. This procedure is a tradeoff in between scalability and simplicity. This allows you to have more than one sensor connected to the same MCU. All you need to do is to instantiate new HallSensor
class and create new buffer functions. For example:
// sensor 1
HallSensor sensor1 = HallSensor(...);
void doA1(){sensor1.handleA();}
void doB1(){sensor1.handleB();}
void doC1(){sensor1.handleC();}
// sensor 2
HallSensor sensor2 = HallSensor(...);
void doA2(){sensor2.handleA();}
void doB2(){sensor2.handleB();}
void doC2(){sensor2.handleC();}
void setup(){
...
sensor1.init();
sensor1.enableInterrupts(doA1,doB1,doC1);
sensor2.init();
sensor2.enableInterrupts(doA2,doB2,doC2);
...
}
Software pin change interrupt
For Arduino Uno and boards using Atmega328 chipd, we will have to use the software interrupt library to use Hall senors with this library, because we will need three interrupt pins and Atmega328 has only 2.
I suggest using the PciManager library.
The steps of using this library in code are very similar to hardware interrupt. The SimpleFOC HallSensor
class still provides you with all the callbacks A
, B
and C
channels but the Simple FOC library will not initialize the interrupts for you.
In order to use the PCIManager
library you will need to include it in your code:
#include <PciManager.h>
#include <PciListenerImp.h>
Next step is the same as before, you will just initialize the new HallSensor
instance.
HallSensor sensor = HallSensor(2, 3, 4, 11);
// A, B and C interrupt callback buffers
void doA(){sensor.handleA();}
void doB(){sensor.handleB();}
void doC(){sensor.handleC();}
Then you declare listeners PciListenerImp
:
// sensor interrupt init
PciListenerImp listenA(sensor.pinA, doA);
PciListenerImp listenB(sensor.pinB, doB);
PciListenerImp listenC(sensor.pinC, doC);
Finally, after running sensor.init()
you skip the call of the sensor.enableInterrupts()
and call the PCIManager
library to register the interrupts for all the sensor channels.
// initialize sensor hardware
sensor.init();
// interrupt initialization
PciManager.registerListener(&listenA);
PciManager.registerListener(&listenB);
PciManager.registerListener(&listenC);
And that is it, it is very simple. It if you want more than one sensor, you just initialize the new class instance, create the new A
, B
and C
callbacks, initialize the new listeners. Here is a quick example:
// sensor 1
HallSensor sensor1 = HallSensor(2, 3, 4, 11);
void doA1(){sensor1.handleA();}
void doB1(){sensor1.handleB();}
void doC1(){sensor1.handleC();}
PciListenerImp listenC1(sensor1.pinC, doC1);
// sensor 2
HallSensor sensor2 = HallSensor(5, 6, 7, 11);
void doA2(){sensor2.handleA();}
void doB2(){sensor2.handleB();}
void doC2(){sensor2.handleC();}
PciListenerImp listenA2(sensor2.pinA, doA2);
PciListenerImp listenB2(sensor2.pinB, doB2);
PciListenerImp listenC2(sensor2.pinC, doC2);
void setup(){
...
// sensor 1
sensor1.init();
sensor1.enableInterrupts(doA1,doB1); // two hardware interrupts
PciManager.registerListener(&listenC1); // one software interrupt
// sensor 2
sensor2.init();
PciManager.registerListener(&listenA2);
PciManager.registerListener(&listenB2);
PciManager.registerListener(&listenC2);
...
}
Step 4. Using hall sensors in real-time
There are two ways to use hall sensor implemented within this library:
- As motor position sensor for FOC algorithm
- As standalone position sensor
Position sensor for FOC algorithm
To use the hall sensor with the foc algorithm implemented in this library, once when you have initialized sensor.init()
it and enabled interrupts sensor.enableInterrupts(...)
you just have to link it to the BLDC motor by executing:
motor.linkSensor(&sensor);
Standalone sensor
To get the hall sensor angle and velocity at any given time you can use the public methods:
class HallSensor{
public:
// shaft velocity getter
float getVelocity();
// shaft angle getter
float getAngle();
}
Here is a quick example using only hardware interrupts:
#include <SimpleFOC.h>
// Hall sensor instance
// HallSensor(int hallA, int hallB , int cpr, int index)
// - hallA, hallB, hallC - HallSensor A, B and C pins
// - pp - pole pairs
HallSensor sensor = HallSensor(2, 3, 4, 11);
// Interrupt routine initialization
// channel A and B callbacks
void doA(){sensor.handleA();}
void doB(){sensor.handleB();}
void doC(){sensor.handleC();}
void setup() {
// monitoring port
Serial.begin(115200);
// check if you need internal pullups
sensor.pullup = Pullup::EXTERN;
// initialize sensor hardware
sensor.init();
// hardware interrupt enable
sensor.enableInterrupts(doA, doB, doC);
Serial.println("Sensor ready");
_delay(1000);
}
void loop() {
// display the angle and the angular velocity to the terminal
Serial.print(sensor.getAngle());
Serial.print("\t");
Serial.println(sensor.getVelocity());
}
Here is a quick example using software interrupts:
#include <SimpleFOC.h>
// Hall sensor instance
// HallSensor(int hallA, int hallB , int cpr, int index)
// - hallA, hallB, hallC - HallSensor A, B and C pins
// - pp - pole pairs
HallSensor sensor = HallSensor(2, 3, 4, 11);
// Interrupt routine initialization
// channel A and B callbacks
void doA(){sensor.handleA();}
void doB(){sensor.handleB();}
void doC(){sensor.handleC();}
// sensor interrupt init
PciListenerImp listenA(sensor.pinA, doA);
PciListenerImp listenB(sensor.pinB, doB);
PciListenerImp listenC(sensor.pinC, doC);
void setup() {
// monitoring port
Serial.begin(115200);
// check if you need internal pullups
sensor.pullup = Pullup::EXTERN;
// initialize sensor hardware
sensor.init();
// interrupt initialization
PciManager.registerListener(&listenA);
PciManager.registerListener(&listenB);
PciManager.registerListener(&listenC);
Serial.println("Sensor ready");
_delay(1000);
}
void loop() {
// display the angle and the angular velocity to the terminal
Serial.print(sensor.getAngle());
Serial.print("\t");
Serial.println(sensor.getVelocity());
}